

COURSE RECORD	
Code	ECE 590
Name	Quantum Informatics
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Spring
Туре	Elective
Location	
Prerequisites	None
Special Conditions	No
Coordinator(s)	Assoc. Prof. Dr. Sergey Borisenok
Webpage	
Content	Interdisciplinary introduction to basic concepts of quantum informatics and
dontont	quantum computation processes covers:
	• Classical information (Boolean) processes. Quantum logic processes.
	• Quantum logical gates and their matrix description.
	• Qubits. Basic quantum gates. Qutrits.
	• Quantum mechanical approach to logic.
	• Pure and entangled states. Qubits as quantum systems.
	• Control of qubit state.
	• Von Neumann entropy.
	• Quantum decoherence.
	• EPR paradox and Bell's states. Quantum teleportation.
	• Different physical models of quantum computation.
Objectives	The purpose of this course is:
	1. to deepen the student understanding of the basic principles of quantum
	information processes;
	2. to deepen the student understanding of the basic principles of quantum
	computations and algorithms;
	3. to develop the student understanding of the engineering background for
	modern qubit-based devices;
	4. to improve the student informatics skills for engineering applications;
	5. to improve the student skills for their independent studies of original
	scientific literature.
Learning	LO1. Learn the basic principles of interdisciplinary approach to modern
Outcomes	engineering science;
	LO2. Learn the basic of modern approach to quantum computations;
	LO3. Learn the basic areas of application for quantum informatics algorithms;
	LO4. Learn the methods of quantum engineering in the developing of modern
	and forthcoming computational technologies;
	LO5. Learn the social impact of modern quantum engineering science;
	LO6. Learn the contribution of quantum informatics to the solution of global
	challenge problems.
Requirements	Basic knowledge of calculus and general physics.
Reading List	TEXTBOOK:
	1. Jaeger, G. 2007. Quantum Information, Springer, New York, ISBN 0-387-
	35725-4.
	2. Nielsen, M.A. and Chuang, I.L. 2000. Quantum Computation and Quantum
	Information. Cambridge University Press, ISBN 0-521-63235-8.
	RECOMMENDED BOOKS:
	3. Miller, D. 2008. Quantum Mechanics for Scientists and Engineers, Cambridge.
	ISBN: 9780521897839.
	4. Scientific articles.

Ethical Rules and	Cooperation vs. Cheating
Course Policy	• Grading will be based on individual performance. Students are expected to be
	aware of the difference between cooperation and cheating (if you cannot
	distinguish the difference, please ask for advice).
	Plagiarism
	• Definition: the practice of taking someone else's work or ideas and passing
	them off as one's own.
	 Proper citing is suggested to avoid plagiarism.
	Latecomers
	• You are allowed to join the class maximum 10 minutes after the class starts.

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lecture	14	10%
Group Works	8	20%
Presentations	2	20%
Web Search	5	10%
Exams	2	40%
	Total	100%

ASSESSMENT	
Evaluation Criteria	Weight (%)
Quizzes	15%
Weekly Assignments and Homework	15%
Presentations	20%
Attendance/Participation	10%
Midterm Exam	20%
Final Exam	20%
	Total 100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

Activity	Duration	Quantity	Work Load
-	(hour)	-	(hour)
Lectures	1	14	14
In class activities	1	14	14
Group work	1	8	8
Pre-Work for Presentation	16	2	32
Presentation	6	2	12
Homework	8	2	16
Research (Web, Library)	4	16	64
Required Readings	5	16	80
Pre-Work for Midterm	32	1	32
Midterm Exam	3	1	3
Pre-work for Final	32	1	32
Final Exam	3	1	3
		General Sum	310

ECTS: 7,5 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	P02	PO3	PO4	P05	P06
L01	5	5	2	5	4	5
L02	5	5	3	5	5	4
L03	5	4	4	4	5	4
L04	4	5	3	4	5	4
L05	3	3	3	5	5	5
L06	2	3	2	5	4	5

* Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Торіс	Outcomes
1	Classical information (Boolean) processes. Quantum logic processes.	L01, L02
	Activity: Lecture, Web search	
2	Quantum logic gates and their matrix description.	L01, L02
	Activity: Lecture, Web search	
3	Qubits (quantum bits). Basic quantum gates.	L01, L02
	Activity: Lecture, group work	
4	Quantum mechanical approach to logic.	L01, L02, L03
	Activity: Lecture, group work	
5	Pure and entangled states. Qubits as quantum systems.	L02, L03
	Activity: Lecture, group work	
6	Qubit control.	L02, L03, L05
	Activity: Lecture Free Week Activity, Web search, group work	
7	Von Neumann entropy.	L02, L03, L05
	Activity: Lecture, group work	
8	Summary for Qubits and Quantum Gates. Midterm Exam.	L01 – L06
	Activity: Presentations, midterm exam	
9	Quantum decoherence.	L02, L03
	Activity: Lecture, Web search	
10	EPR paradox and Bell's states. Quantum teleportation.	L01, L04
	Activity: Lecture, group work	
11	Qutrits and their applications.	LO4, LO5, LO6
	Activity: Lecture, Web search	
12	Optics based quantum computations.	L01, L02, L04
	Activity: Lecture, group work	
13	NMR based quantum computations.	L01, L02, L04
	Activity: Lecture, group work	
14	Solid state based quantum computations.	L01, L02, L04
	Activity: Lecture, group work	
15	Ion trapping based quantum computations. Conclusions.	L01, L04, L05,
	Activity: Lecture, presentations	L06
16	Final Exam.	L01 – L06
	Activity: Final exam	

Prepared by Assoc. Prof. Dr. Sergey Borisenok

> Date 16/04/2018